Semi-supervised learning for photometric supernova classification★
نویسندگان
چکیده
منابع مشابه
Semi-Supervised Learning for Blog Classification
Blog classification (e.g., identifying bloggers’ gender or age) is one of the most interesting current problems in blog analysis. Although this problem is usually solved by applying supervised learning techniques, the large labeled dataset required for training is not always available. In contrast, unlabeled blogs can easily be collected from the web. Therefore, a semi-supervised learning metho...
متن کاملSemi-supervised learning for image classification
Object class recognition is an active topic in computer vision still presenting many challenges. In most approaches, this task is addressed by supervised learning algorithms that need a large quantity of labels to perform well. This leads either to small datasets (< 10, 000 images) that capture only a subset of the real-world class distribution (but with a controlled and verified labeling proce...
متن کاملSemi-supervised Learning for Multi-label Classification
In this report we consider the semi-supervised learning problem for multi-label image classification, aiming at effectively taking advantage of both labeled and unlabeled training data in the training process. In particular, we implement and analyze various semi-supervised learning approaches including a support vector machine (SVM) method facilitated by principal component analysis (PCA), and ...
متن کاملSemi-supervised Learning for Sentiment Classification
With the growing need of identifying opinions and sentiments automatically from online text data, sentiment classification tasks have received considerable attention recently. One can treat sentiment classification as a text classification problem, however, it is very time-consuming and somewhat impractical to acquire enough labeled data to train a good sentiment classifier. This paper investig...
متن کاملSpectral Kernel Learning for Semi-Supervised Classification
Typical graph-theoretic approaches for semisupervised classification infer labels of unlabeled instances with the help of graph Laplacians. Founded on the spectral decomposition of the graph Laplacian, this paper learns a kernel matrix via minimizing the leave-one-out classification error on the labeled instances. To this end, an efficient algorithm is presented based on linear programming, res...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Monthly Notices of the Royal Astronomical Society
سال: 2011
ISSN: 0035-8711
DOI: 10.1111/j.1365-2966.2011.19768.x